Journal of Hyperbolic Differential Equations

Journal of Hyperbolic Differential Equations

SCIE
  • 期刊ISSN:0219-8916
  • 研究方向:数学
  • 影响因子:0.426
  • SCI类别:SCIE
  • 是否OA:No
  • 出版地:UNITED STATES
  • 年文章数:24
  • 涉及的研究方向:数学-应用数学
http://www.worldscientific.com/page/jhde/submission-guidelines
Journal of Hyperbolic Differential Equations简介 Magazine introduction
  • 英文简介

    This journal publishes original research papers on nonlinear hyperbolic problems and related topics, of mathematical and/or physical interest. Specifically, it invites papers on the theory and numerical analysis of hyperbolic conservation laws and of hyperbolic partial differential equations arising in mathematical physics. The Journal welcomes contributions in:Theory of nonlinear hyperbolic systems of conservation laws, addressing the issues of well-posedness and qualitative behavior of solutions, in one or several space dimensions.Hyperbolic differential equations of mathematical physics, such as the Einstein equations of general relativity, Dirac equations, Maxwell equations, relativistic fluid models, etc.Lorentzian geometry, particularly global geometric and causal theoretic aspects of spacetimes satisfying the Einstein equations.Nonlinear hyperbolic systems arising in continuum physics such as: hyperbolic models of fluid dynamics, mixed models of transonic flows, etc.General problems that are dominated (but not exclusively driven) by finite speed phenomena, such as dissipative and dispersive perturbations of hyperbolic systems, and models from statistical mechanics and other probabilistic models relevant to the derivation of fluid dynamical equations.Convergence analysis of numerical methods for hyperbolic equations: finite difference schemes, finite volumes schemes, etc.The Journal aims to provide a forum for the community of researchers who are currently working in the very active area of nonlinear hyperbolic problems, and will also serve as a source of information for the users of such research.There is no a priori limitation on the length of submitted manuscripts, and even long papers may be published.

  • 中文简介

    该期刊发表关于非线性双曲线问题和相关主题的原始研究论文,数学和/或物理兴趣。具体而言,它邀请了关于双曲守恒定律和数学物理中出现的双曲偏微分方程的理论和数值分析的论文。期刊欢迎以下方面的贡献:非线性双曲守恒定律系统理论,解决了一个或多个空间维度中解的适定性和定性行为问题。数学物理的双曲微分方程,如广义相对论的爱因斯坦方程,狄拉克方程,麦克斯韦方程,相对论流体模型等。洛伦兹几何,特别是满足爱因斯坦方程的时空的全局几何和因果理论方面。连续体物理中出现的非线性双曲系统,如:流体动力学的双曲线模型,跨音速流的混合模型等。由有限速度现象主导(但不是唯一驱动)的一般问题,例如双曲线系统的耗散和色散扰动,以及来自统计力学和与流体动力学方程的推导相关的其他概率模型的模型。双曲型方程数值方法的收敛性分析:有限差分格式,有限体积格式等。该期刊旨在为目前正在非常活跃的非线性双曲线问题领域工作的研究人员提供一个论坛,并且还将作为此类研究用户的信息来源。提交稿件的长度没有先验限制,甚至可能会发表长篇论文。

  • 影响因子趋势图

相似期刊推荐 Recommendation for similar journals
期刊服务明细 SERVICE DETAILS

稿件预审

快速预审、投刊前指导、专业学术评审,对文章进行评价 立即咨询

润色编辑

校对编辑、深度润色,让稿件符合学术规范,格式体例等标准 立即咨询

学术翻译

适用于语句和结构尚需完善和调整的中文文章,确保稿件达到要求 立即咨询

文章查重

数据库包括:期刊、文章、书籍、会议、预印书、百科全书和摘要等 立即咨询

期刊推荐

让作者在期刊选择时避免走弯路,缩短稿件被接收的周期 立即咨询

稿件格式修正

根据目标期刊格式要求对作者文章进行全面的格式修正和调整 立即咨询

协助提交稿件

协助作者将稿件提交至目标期刊投稿系统,降低退稿或拒稿率 立即咨询

投稿附言指导

按照您提供的稿件内容,指导完成投稿附信(cover letter) 立即咨询
权益保障 protection of rights and interests

安心交易

不成功退款,无后顾之忧,风险服务升级。

合规备案认证机构

资质许可齐全,合规经营,用户权益有保障。

正刊保障

刊物在国家新闻出版署网可查,抵制假刊、增刊。

对公账户资金监管

交易均通过对公账户,资金安全有保障。
全部服务项目 SERVICE ITEMS

812751拥有老客户

918539评职称指导

63352国际出版服务

819867开具合同

SCI期刊网国内外期刊论文咨询指导

工作时间:每日8:00 - 24:00