安心交易
不成功退款,无后顾之忧,风险服务升级。Chaos, Solitons & Fractals has an open access mirror journal Chaos, Solitons & Fractals: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.Chaos, Solitons & Fractals aims to be a leading journal in the interdisciplinary field of Nonlinear Science. It encourages the submission of articles concerning the fundamentals of the following subjects: dynamics; non-equilibrium processes in physics; complex matter and networks; computational biology; fluctuations and random processes; self-organization; social phenomena; technology.The journal can only accept papers whose primary subject area lies within the above Aims & Scope. In particular, please take notice of the following:In order to be acceptable, manuscripts of more mathematical nature should at least attempt a connection to physical insight or new qualitative features. The word "Solitons" should be understood as a label especially extended to all nonlinear integrable systems in complex natural phenomena. The paper should not bear on some explicit formulae, some standard solutions, constructions, or asymptotic methods.The journal is interested in articles providing strong insights in the mathematical theory of fractals that play an important role either in understanding the general theory or are profound for an important particular application, especially in complex systems. Numerical computations should only assist the developed results. Also welcome are the discovery of new fractals that are crucial for important applications.The subject listing is specified further in the journal's classification list. Authors are required to specify matching classifications upon submission of their work.Authors are encouraged to link to their data posted in a repository or uploaded to Mendeley Data.Authors can submit separate research elements describing their data to Data in Brief and software to Software X.
混沌,孤独与分形有一个开放的镜像期刊混沌,孤独与分形:X,共享相同的目标和范围,编辑团队,提交系统和严格的同行审查。《混沌,孤子与分形》杂志旨在成为非线性科学跨学科领域的领先期刊。它鼓励提交关于下列主题基本原理的文章:动力学;物理学中的非平衡过程;复杂物质和网络;计算生物学;波动和随机过程;自组织;社会现象;技术。本刊只接受主要学科范围在上述目标范围内的论文。特别请注意以下事项:为了被接受,更多数学性质的手稿至少应该尝试与物理洞察力或新的定性特征相联系。“孤子”一词应被理解为一个标签,特别适用于复杂自然现象中的所有非线性可积系统。这篇论文不应该包含一些显式公式、一些标准解、结构或渐近方法。该杂志感兴趣的文章提供了对分形数学理论的深刻见解,无论是在理解一般理论中发挥重要作用,或对一个重要的特殊应用,特别是在复杂的系统中是深刻的。数值计算只应有助于发展的结果。同样受欢迎的是发现了新的分形,这些分形对于重要的应用是至关重要的。主题列表在期刊的分类列表中进一步指定。作者被要求在提交作品时指定匹配的分类。我们鼓励作者链接到存储库中发布的数据或上传到Mendeley data的数据。作者可以提交单独的研究元素,简要地描述他们的数据到数据,软件到软件X。
大类学科 | 分区 | 小类学科 | 分区 | Top期刊 | 综述期刊 |
数学 | 2区 | MATHEMATICS, INTERDISCIPLINARY APPLICATIONS 数学跨学科应用 PHYSICS, MATHEMATICAL 物理:数学物理 PHYSICS, MULTIDISCIPLINARY 物理:综合 | 1区 1区 2区 | 是 | 否 |
JCR分区等级 | JCR所属学科 | 分区 | 影响因子 |
Q1 | MATHEMATICS, INTERDISCIPLINARY APPLICATIONS | Q1 | 9.922 |
PHYSICS, MATHEMATICAL | Q1 | ||
PHYSICS, MULTIDISCIPLINARY | Q1 |
安心交易
不成功退款,无后顾之忧,风险服务升级。合规备案认证机构
资质许可齐全,合规经营,用户权益有保障。正刊保障
刊物在国家新闻出版署网可查,抵制假刊、增刊。对公账户资金监管
交易均通过对公账户,资金安全有保障。国内期刊
中文文章服务首选国际期刊
英文文章服务首选国际会议
会议文章服务首选评职加分
评职称文章服务首选812751拥有老客户
918539评职称指导
63352国际出版服务
819867开具合同